
SIMAI 2004
modelli e metodi matematici applicati all’industria, alla

tecnologia, alla biologia, alla finanza, all’ambiente

Using sparse matrices and
splines-based interpolation in
computational fluid dynamics

simulations

Gianluca Argentini
Laboratorio di Computazione Avanzata

Riello Group, Legnago (VR), Italy

gianluca.argentini@riellogroup.com

Summary

• Position of the computational problem

• The method of splines-based interpolations

• The computation of the splines coefficients

• The computation of the splines values

• A principle of virtual equivalence

• Pros and cons of the method

Numerical problems for burners

Design, development and engineering of
industrial power burners have strong
mathematical requests:

• computation of fields of temperature,
pressure and velocity in the combustion
chamber

• correct design of the combustion head for
an optimal efficiency of the flame

• computation of all the flows
(air, oil, residual gases) in
the burner components

• design of the optimal
shape for ventilation fans

Limited area meteo model

Two recent floodings by violent meteorological
events have induced to consider a service of
weather forecasting

vaghissimi e famosi colli Euganei

F. Petrarca, 1304-1374,
700th anniversary of the birth

the company has factories in two opposite side of the
geographical zone interested by Euganei Hills

Numerical Weather Prediction: based on mathematical models and
numerical resolution of a PDEs system on the atmospheric fluid

Streamlines over a hill from a raw
version of EHLAM, Euganean Hills
Limited Area Model

Computational fluid dynamics

Numerical resolution of a system of PDEs for fluid flows is required:

• Navier-Stokes for velocity and pressure of flows

• diffusion-like equation for temperature field

• conservation law for mass and energy of multiphase fluids, i.e liquid-
gas oil components

• boundary conditions for the geometry of domain, e.g. combustion
chamber

The computational model for
burners is quite similar to
that of NWP

Large use of distributed and
parallelized computations on
multiprocessor computers

Computational complexity analysis for a flow

Simple example for a detailed knowledge of the velocity-field of fluid
particles in the combustion chamber, using a flow-like grid :

• M is the number of flow streamlines to compute

• S is the number of geometrical points for every streamline

High values for M are important for a realistic simulation of the flow,
high values for S are important for a fine graphic resolution : good
values are of order 103 - 104

Using finite difference in a computational grid, for every time step the
number of computational flops is of order 109, and from Courant-
Friedrichs-Lewy (CFL) condition, the time step must to be very small:

computation and graphic rendering of one minute of flow is very CPU
expensive (some Gflop/s) and RAM consuming (hundreds of Mbytes)

Mathematical models and software

We have experimented three ways:

1. commercial software, based on finite elements method for a
numerical resolution of Navier-Stokes equations; in general, the
accuracy of solution is good, but the methods are not easy
customizable and CPU-RAM expensive;

2. cellular automata model for the computation of velocity field, based
on C or Fortran programs, very useful for generic geometries but RAM
consuming; the treatment of the temperature is difficult;

3. finite difference schema for the complete system of equations, based
on MATLAB or Fortran programs; the computation of the flow is
complete, but for a realistic simulation we must verify CFL condition
and stability criteria.

Cellular automaton model

S. Wolfram (1986) has shown the equivalence between some cellular
automata for fluids and Navier-Stokes equations

With some simple customized models of cellular automata we have
obtained good geometrical description of flows, but we have noticed
difficulties on:

1. correct treatment of boundary conditions;

2. computation of the temperature field;

3. huge consumption of CPUs and RAM.

Re ∼ k logρ

Finite difference schema model

PDEs system from Navier-Stokes equations, mass conservation law,
first thermodynamics principle, fluid equation of state

unknowns: velocity vector, pressure, density, temperature

a generic shape of a burner component or the orography of a hill
require a non-uniform computational grid

FD schema: Lax-Friedrichs (forward in time, centered in space)

Example of computational complexity for a small simulation. 3D box
50x25x25 cm, medium scalar velocity of fluid in each cartesian
direction of combustion chamber 50 cm/sec, a space resolution of 0.5
cm: what is a right time-step? From CFL condition we have

time-step < 0.5 cm / 50 cm/sec = 0.01 sec

 O(1010) flops and 5 GB RAM for 1 real minute of simulation

The method of FD and interpolations

Two problems:

1. time-step is too small and generates a lot of non useful snapshots
per second;

2. RAM occupation is very large even in the case of limited simulations.

Suppose to accept 10 snapshots/second; from CFL condition we have

min space-step = 0.1 sec * 50 cm/sec = 5 cm

For realistic resolution of single components and good graphic
rendering, this value can be too high: for better final results, we have
developed a method based on the interpolation of the computed values
of FD solutions; we have experimented that CPUs effort and RAM
occupation are lower than in the case of a fine grid simulation, without
significant loss in the final resolution.

Phases for interpolations

The method is based on two steps for the graphic rendering of fluid
particles trajectories, after the numerical computation of Navier-Stokes
or CA model:

1. interpolation by cubic
splines of the geometric
positions of the particles:

2. fine valuation of every
cubics in a suitable set of
time values ti:

Fitting the trajectories

Let S the number of computed velocity vectors in a particle trajectory,
M the number of trajectories.

What method for interpolation of speed-points?

• Bezier-like is not realistic for rendering the
divergence of velocity field

• Chebychev or Least-Squares-like are too rigid in
the case of a customized application

• polinomial-like is simple but often shows
spurious effects as Runge phenomenon, p.e. :

We have obtained better results with a
particular splines-based method.

The splines-based algorithm

Let S = 3 x N : a trajectory is divided into N groups, each of 4 points

At every group the points are interpolated by three cubic polynomials
imposing four analytical conditions:

• passage at Pk point, 1 § k § 3

• passage at Pk+1 point

• continuous slope at Pk point

• continuous curvature at Pk point

For smooth rendering and for avoiding excessive twisting of
trajectories, the cubics uk are added to the Bezier curve b
associated to the four points:

v = ab + buk 0 < a, b < 1

Finding the splines

We consider a = b = 0.5

Let b = As3 + Bs2 + Cs + D (0 § s § 1) the Bezier curve of control points
P1,…,P4; for every spline

uk = at3 + bt2 + ct + d (0 § t § 1)

the coefficients can be computed by the system

(a, b, c, d) = T (Pk+1, Pk, B, C, 1)

(matrix-vector multiplication) where the matrix T is constant :

A global matrix for splines

We define the G matrix:

(0 is the 4 x 5 zero-matrix)

G is a 4M x 5M sparse matrix with
density number < 1/M

if b = (Pk+1, Pk, B1, C1, 1, . . ., Pk+1, Pk, BM, CM, 1)
we can compute for every two-points group the coefficients of cubic
splines for all the M trajectories:

coeff = G b

Flops and time execution for the splines

The theoric number of floating point operations for computing the
coefficients of all the splines in flow is O(10 M2 N)

in a useful not too small simulation the N, M values are of order 103 -104

the total number of flops is O(1012)

With a processor having a clock frequency of GHz order the total time
can require some hundreds of seconds, which is a performance not very
good for fast graphics; using

• some mathematical libraries as LAPACK
routines (Fortran calls or Matlab environment)

• distributed computation on a multinode cluster

we have reached a computation time of some tens of seconds

Computing with Lapack

Example : Matlab has internal Lapack level 3 BLAS routines for fast
matrix-matrix multiplication and treatment of sparse matrices

These are the results
for single multiplication
using Intel Xeon 3.2
GHz with 1 MB internal
cache :

for M=104 the memory
occupied by the sparse
version of G is only
O(102) KB instead of
theoric O(106) KB: G
can be stored in the
processor cache

Distributed computing

If we have p processors, with Mod(M,p)=0, we can run faster the
computation of splines distributing M/p rows of matrix G to every
processor:

• Single Program Multiple Data method

• no communication among processes is involved; there is only a
limited overhead for sending the rows of G to every processor

• tests with a Matlab multi-engine environment

From previous example, using 4 Xeon processors and N=103, the
registered execution time for computing all the splines is about 12
seconds (0.012 * 3 * 103 / 4 = 9 the theoric):

timeexecution = timecpu + timeoverhead

Post-processing phase

Now we would a fast method for computing the splines values in a set
of parameter ticks with fine sampling

Let V + 1 the number of ticks for each cubic spline valuation; then the
ticks are (0, 1/ V, 2/ V, . . ., (V -1)/ V , 1), and the values of parameter in
the computation are their (0, 1, 2, 3)-th degree powers. The value of a
cubic at t0 can be view as a dot product:

at03
 + bt02

 + ct0 + d = (a, b, c, d) ∏ (t03, t02, t0, 1)

This fact permits to
consider a new
constant 4 x (V+1)
T matrix:

An eulerian view

This is the M x 4 matrix C,
each row is a spline between
two points, and this for all the
M trajectories

Then the M x (V+1) matrix product V = C T contains in each row the
values of a cubic between two data-points, for all the M trajectories
(eulerian method: computation of all the trajectories at a predefined set
of time ticks).
The theoric number of floating point operations for computing all the
cubics values for all the trajectories in flow is O(10 MVN).

Computing the values of splines

The black line is a real trajectory
from FD computation; the red is the
virtual line from splines method

(at left the line has been shifted;
trajectory of a gas particle in
combustion chamber exiting from
forced ventilation fan)

The matrices product is fast with Matlab incorporated Lapack routines:
tests with Xeon 3.2 GHz processor, M=104 and V=10 show a time of
0.02 seconds for one multiplication;

if N=102, the time for computing the values of all the splines of a FD
time-step (a snapshot of flow) is 0.02 x 3 x 102 = 6 seconds

A virtual equivalence

Assume that the splines method is equivalent to a Finite Difference
method with a grid space-step defined by the value of V; from CFL:

time-stepsplines = L x (3N)-1 x s-1 , where L is the linear length and s the scalar
speed of flow

time-stepFD = L x (3NV)-1 x s-1

Example with L=3m, M=104,
N=102, s=30cm/sec, V=10;

Report of total execution time (FD computation & graphics) for 1
minute of real simulation, 1 second between two snapshots, with four
3.2 GHz Xeon processors, for the two methods (Matlab parallel multi-
engine environment):

Numerical considerations

timesplines ∼ 450 sec (FDc) + 4500 sec (splines) + 3000 sec (graphic
rendering) ∼ 8000 sec

RAMsplines (total allocation) ∼ 1 GB for every flow snapshot

timeFD ∼ 8000 sec (FDc) + 2000 sec (graphic rendering) ∼ 10000 sec

RAMFD (total allocation) ∼ 2 GB for every flow snapshot

Example of graphic output for a V=4
grid step (∼ 2 mm space-step)

red = line from splines method (AB first
spline, BC second spline)

black = points from full FD method

Pros and cons

The spline method :

• reduces total time of computation and RAM allocation

• is easly adaptable for a multiprocessor architecture

• its graphic rendering gives results comparable with those of FD
method

• it is limited to the design of particles trajectories and gives no
information on other Navier-Stokes variables as pressure, temperature

• it is not useful in the case of very small geometries (the interpoled
trajectories can cut the small element of boundary)

• its equivalence with a finer-grid FD method must to be mathematically
justified

Thank you
September, 2004

